- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Azencott, Robert (1)
-
Dabirian, Hossein (1)
-
El Tallawi, Carlos (1)
-
Herring, James (1)
-
Mang, Andreas (1)
-
Sultamuratov, Radmir (1)
-
Zoghbi, William (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let $$\mathcal{D}$$ be a dataset of smooth {3D}-surfaces, partitioned into disjoint classes $$\mli{CL}_j$$, $$j= 1, \ldots, k$$. We show how \emph{optimized diffeomorphic registration} applied to large numbers of pairs $$S,S' \in \mathcal{D}$$ can provide descriptive feature vectors to implement automatic classification on $$\mathcal{D}$$, and generate classifiers invariant by rigid motions in $$\mathbb{R}^3$$. To enhance accuracy of automatic classification, we enrich the smallest classes $$\mli{CL}_j$$ by diffeomorphic interpolation of smooth surfaces between pairs $$S,S' \in \mli{CL}_j$$. We also implement small random perturbations of surfaces $$S\in \mli{CL}_j$$ by random flows of smooth diffeomorphisms $$F_t:\mathbb{R}^3 \to \mathbb{R}^3$$. Finally, we test our automatic classification methods on a cardiology data base of discretized mitral valve surfaces.more » « less
An official website of the United States government
